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The theory of random matrices predicts that the eigenvector statistics of quantum operators associat-
ed with chaotic dynamics should undergo a rapid transition from one universality class to another as a
symmetry of the system is gradually broken. We show by a numerical calculation that the transition in
strength correlations of the eigenvector components are identicial to the random-matrix predictions for
time-reversal violations. This transition turns out to be governed by the same parametrization as in the
case of spectral fluctuations of these systems but the speed of transition is different for the two cases.
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I. INTRODUCTION

There has been considerable interest in the spectral and
strength correlations of quantum-mechanical operators
associated with systems whose classical analogs are fully
chaotic. Various studies indicate that, in the semiclassi-
cal limit #—0, correlations of a few eigenvalues and
eigenvectors show universal behavior; they depend only
on the symmetries existing in the system and are indepen-
dent of all other details of the distribution of individual
matrix elements. This behavior of short- and long-range
correlations can be modeled by the universality classes of
random matrices, i.e., the matrices whose elements are
random variables with given probability laws.

The three important universality classes well suited for
the autonomous Hamiltonians are the Gaussian orthogo-
nal ensemble (GOE) of real symmetric matrices, the
Gaussian symplectic ensemble (GSE) of quaternion self-
dual Hermitian matrices, and Gaussian unitary ensem-
bles (GUE) of general Hermitian matrices. The first two
of these are for time-reversal (7) invariant systems and
the third for time-reversal noninvariant (TRNI) systems.
For the evolution operators of quantum maps there are
three analogous circular ensemble models, viz., the COE
of symmetric unitary matrices, the CSE of quaternion
self-dual unitary matrices, and the CUE of general uni-
tary matrices. Dyson and Mehta [1,2] have calculated
the correlation functions of all orders in these ensembles.
The GOE works well for nuclear, atomic, and molecular
data [3], but there are excellent confirmations of all the
universality classes in chaotic systems with few degrees of
freedom for autonomous systems [4—-6] as well as quan-
tum maps [7,8].

These ensembles, however, may not be appropriate
when a symmetry of the system is only partly broken [9].
This is because the spectral and strength fluctuations in a
complicated system depend on the good symmetry of the
system, changing therefore from one pattern to another
as the symmetry parameter is slowly varied. For exam-
ple, for partial T violation in autonomous systems, en-
sembles intermediate between GOE and GUE, or be-
tween GSE and GUE, may be appropriate [9-11,4].
Similar considerations for approximate quantum num-
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bers (such as isospin in nuclear spectra [12] and LS quan-
tum numbers in atomic spectra [13]) may lead to a transi-
tion from a superposition of several independent GOE’s
to a single GOE. In order to model such cases, Dyson
[14] introduced Brownian motion ensembles of random
matrices in which the symmetry-breaking parameter 7
(say, the ratio of the squared norms) plays the role of
“time” and the above universality classes are obtained as
stationary (7—> o0 ) limits. This conjecture which is now
well confirmed [9-11,15] not only lends credence to
universality above but also gives new techniques for
detecting small symmetry breakings in real systems. It is
shown moreover that, for very small 7 and large N (di-
mension of the matrix), the transition will be smooth as a
function of a local parameter A which measures the
mean-square symmetry admixing matrix element (7v?) in
units of local average spacing D; A=tv%/D? (=7N¢,
where a >0). For GOE—GUE and GSE—GUE (simi-
larly for COE—CUE and CSE—CUE) transitions, the
correlation functions of all orders have been obtained
[10,15]. This transition theory when applied to nuclear
data has given sharp bounds on T violation in the nuclear
interaction [11]. Moreover, now we also have compelling
evidence (analytical as well as numerical) [16,19] that the
symmetry breaking clearly manifests itself in spectral
correlations in conformity with the random-matrix pre-
dictions.

The success of random-matrix theory (RMT) in model-
ing the eigenvalue spectra, both in exact as well as par-
tially violated symmetry cases, encourages one to hope
the same for eigenvector statistics too. In fact, a recent
study [20] for kicked tops with exact symmetries shows
that eigenvector statistics in this case has a universal na-
ture and behaves in a similar way as that for the exact
symmetry classes of RMT. The eigenvector statistics for
random-matrix ensembles, for symmetry-preserving
cases, has already been worked out [11,17,18]. In the
large matrix dimensionality limit, N — oo, the probability
density for one component of an eigenvector for these
cases can be expressed by a X%a distribution of degree [
with B=1 for the GOE and B=2 for the GUE. This re-
sult is also valid for the circular ensembles in the large-N
limit. A similar formulation for the Brownian motion en-
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sembles, i.e., the random-matrix ensembles with a small
symmetry-violation, is not yet fully available. There have
been many attempts in this direction. The first one was
by French et al. (later referred to as FKPT) [11], who
gave an approximate theory for the probability density of
one component of an eigenvector and the variance. Later
on, Zyczkowski and Lenz [21] suggested a different form
of the one-parameter family of interpolating functions.
Their formulation was based on the assumption that the
real and imaginary parts of the eigenvector components
are distributed independently according to two different
Gaussians. But the dependence of the distribution of the
eigenvector component on its modulus only (due to gauge
freedom) makes this assumption inadequate as recently
pointed out by Sommers and Iida (later referred to as SI)
[22].

In an attempt to remove this inadequacy, Sommers and
Iida [22] proposed a new formulation for the probability
density of one component of an eigenvector for transition
ensembles, in the large matrix dimensionality limit. Re-
cently, a numerical verification carried out by
Zyczkowski [24], for random-matrix ensembles, indicated
validity of the formulation. In this paper, we numerically
apply this formulation to symmetry-breaking cases of
quantum chaotic systems and find its validity here too.
Moreover our calculations for a generic quantum chaotic
map, namely kicked rotor, show that the eigenvector
statistics not only in the exact symmetry cases but also in
the transition cases has a universal nature and can be well
modeled by random-matrix formulation. We reached a
similar conclusion about eigenvalues statistics as well
[16].

We choose the kicked rotor system for our numerical
study, as it has been an active model of research, contain-
ing a variety of features such as localization, resonance,
dependence of the spectra on the number theoretical
properties, etc., and has been used as a model for a very
wide range of physical systems [23]. Besides, the kicked
rotor can also display discrete symmetries such as parity
and time reversal [7,16]. This will enable us to study the
way small violations of these symmetries reveal them-
selves in the distribution of eigenfunctions. The Hamil-
tonian associated with kicked rotor dynamics is time
periodic, which results in the time-independent nature of
the time-evolution operator (if considered for integer
multiples of the kicking period). The quantum dynamics
of the kicked rotor, therefore, can be studied in terms of
eigenvalues and eigenvectors of the time-evolution opera-
tor.

It is worth mentioning here that so far random-matrix
results are derived only for ensembles of Hermitian ma-
trices and we have dealt with ensembles of unitary ma-
trices (i.e., the time-evolution operator). But a good
agreement of our numerical results with those obtained
analytically for Gaussian ensembles implies the formula-
tion is valid for circular ensembles too, in the large ma-
trix dimensionality limit. This is not surprising, as we
have already seen that at least all the spectral measures
for both Gaussian as well as circular ensembles tend to
have the same form in the semiclassical limit [15].

To study the variation of statistical properties of eigen-
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vector components due to a weak symmetry breaking, we
proceed as follows. First, in Sec. II, we briefly review the
dynamics of a kicked rotor, both classical as well as quan-
tum, and the associated symmetries. Section III deals
with a brief history of RMT for eigenvector components;
here we review the formulations given by both FKPT and
SI. The reason for including FKPT formulation is that it
describes the smooth transition in strength correlations in
terms of the parameter, which is used for the same pur-
pose in spectral correlation too; we studied the spectral
correlations in a quantum kicked rotor (QKR) in terms of
this parameter. This is followed by a numerical study of
the eigenvector statistics of a kicked rotor, given in Sec.
IV.

II. THE KICKED ROTOR:
CLASSICAL AND QUANTUM DYNAMICS

The kicked rotor can be described as a pendulum sub-
jected to periodic kicks (with period T) with the following
Hamiltonian:

2 0
Hzip_?i+{_2 cos2mO+¢) 3 8(t—nT), (1)
T

n=-—oo

where K is the stochasticity parameter. For simplicity
we set T=1. The parameters ¥ and ¢ are introduced in
the Hamiltonian in order to mimic the effects of the
time-reversal (7") and the parity (P) symmetry breaking
in a quantum system.

Integration of the associated equations of motion for
t=(n—1/2) and t=(n-+1/2) and rescaling p/2—p
gives the classical map,

K .
DPn +1=Pn+E sin |27

’

2

9n+¢+p,,+l]

6,+1=0,+tp,+p, 1V, (2)

The map is area preserving and is invariant under the
discrete translation (6—6+1,p—p +1). The other two
discrete symmetries in the classical kicked rotor are time
reversal T(p——p,0—0,t——1t) and parity
P(p——p,0——0), preserved even for nonzero values
of y and ¢. It is because the change of p—p—+y or
0—0+¢ /21 is a canonical transformation and therefore
does not affect the classical Hamiltonian. But, as ex-
plained later, the nonzero values of ¥ and ¢ may break
respective symmetries in the quantum kicked rotor [16].
The classical map depends only on parameter K. Under
the variation of K, the dynamics changes from integrable
(K=0) to near-integrable (0<K <4.5) to large-scale
chaos (K >4.5).

Floquet’s theorem enables us to describe the related
quantum dynamics by a discrete time evolution operator

U =GBG, where
B =exp(—iK cos(2w0+¢)/47*#) , 3)
G=exp(—i(p+y)2/4#) .

The nature of the quantum dynamics and therefore the
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statistical properties of the associated quantum operators
depend on 7 and K. For a rational value of # /2, the dy-
namics can be confined to a torus while for irrational
value it takes place on a cylinder [23]. We employ torus
J

—i cos

]

1
U,..= —N—2§exp N

A #

Ny
X 3 exp(—i[m* A2+ 1) —my(I+1')]) exp

LI=—N,

where N, =(N—1)/2
m,n=—N,,—N,+1,...,N;.
In contrast to the classical dynamics, the quantum dy-
namics, if restricted- to a torus, can be affected by the
transformation p—p+7y,0—-60+¢/27w. The reason is
that the quantum Hamiltonian, acting in a finite Hilbert
space, is no longer invariant under a unitary transforma-
tion [i.e., T'UT#U or PTUP#U for the values of
jm/N<¢<(j+1)m/N,lfi<y <(l+1)%A with both j and
| as integer]. Our numerical analysis further indicates
that invariance of the quantum dynamics under a symme-
try breaking depends not only on respective values of ¢
and ¢ but also on K. More precisely, it is the relative
values of three parameters, namely, K, #, and N, which
can affect the quantum dynamics quite significantly. The
earlier studies [23] have shown that for K?2>N#
(=2mM) (the strong chaos limit) the eigenstates are fully
extended in momentum space. We also know that the
spectrum as well as the distribution of eigenvector com-
ponents in this case, with parameters ¥ and ¢ chosen to
preserve either exact or partially violated symmetry, can
be modeled by the random-matrix theories (RMT) [7,16].
In the opposite limit of weak chaos, namely, K 2 << N#,
the eigenstates localize in the momentum space and one
obtains a Poisson distribution for the spectrum. The
quantum dynamics has a time-reversal symmetry T for
v =0 (or 1#, | integer) and a parity symmetry P for ¢=0
(or jm/N, j integer). Though the T symmetry may be
violated for y+O0, still a more generalized antiunitary
symmetry S =TP=PT can be preserved in the system if
¢=0 [7,16]. By a slow variation of these parameters, one
can realize the various intermediate stages of the statisti-
cal properties of quantum operators, for example, the
Poisson spectrum can be obtained by K variation. One
can also obtain four transitions from time reversal and
parity symmetry: (i) P “fully” broken but T only “part-
ly,” (ii) P and T both fully broken but TP (an antiunitary
symmetry like T) partly, (iii) T preserved but P partly
broken, and (iv) TP preserved but T and P partly broken.
In each case, a single parameter (y or ¢) can be identified
to govern the partial symmetry breaking. The Brownian
motion theory predicts COE— CUE for (i) and (ii) and 2
COE—COE for (iii) and (iv) under the random-matrix
hypothesis. Assuming this hypothesis to be valid for
strongly chaotic systems, in Ref. [16] we have obtained a
semiclassical formulation for two-level spectral fluctua-
tion measures for the transition cases as well as for the lo-

(with N odd) and
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boundary conditions (6'=0-+1,p'=p +M) by taking
#i/2m=M /N; both p and @ then have discrete eigenval-
ues and U can be reduced to a finite N-dimensional ma-
trix of the form [23]

N

__l.[l(m —)+I'G —n)

] ) 4)
I

cal parameters governing these transitions. We have also
numerically verified the presence of these transitions in
spectral fluctuations of QKR [16]. In this paper, we aim
to do the same for strength fluctuations [only case (i) is
dealt with here].

II1. EFFECT OF SYMMETRY BREAKING
ON EIGENVECTOR STATISTICS:
A RANDOM-MATRIX APPROACH

The study of eigenvector statistics can be carried out
by studying the probability distribution P(y) of intensi-
ties or strengths y;, =N|(k|E;)|* of eigenvector |E;) in
any arbitrary basis |k), k=1,...,N. The numerical
study of the distribution P(y) (where subscript ik is
dropped for simplicity) is facilitated by the fact that there
are N? elements available for eigenvector statistics as
compared to N elements for level statistics (provided by
the diagonalization of an N X N Hamiltonian matrix, or,
in our case, the time-evolution operator). Though the
eigenvector statistics is inherently basis dependent, still it
is believed [20] that for each system a class of ‘“‘generic
basis” exists, for which the eigenvectors have the same
statistical properties.

For the universality classes, the orthogonal invariance
of the ensemble can be used to obtain eigenvector com-
ponents distribution. For Gaussian ensembles, the distri-
bution P(y) is given by [17]

(B/2)—1
Ply)= (BN /2) ¥
NT(B/2T(BN—1)/2) | N
(BIN—1)/72)—1
_y
x [1-% : 5)

where B=1,2,4 give the distribution for GOE, GUE, and
GSE, respectively. In the semiclassical regime, N >>1,
the above formula is well approximated by

B/2

Here the strengths are asymptotically independent, distri-
buted around a mean value (y ) =N ~!. Equation (6) is in
fact the X/23 distribution with B degrees of freedom. The
basic property of this distribution can be briefly men-
tioned as follows: if we consider B-independent random
variables x;, i =1,...,8 and each variable has a Gaussian



53 EFFECT OF SYMMETRY BREAKING ON “CHAOTIC” ...

probability distribution with zero mean and variance
o /VB then the sum of squares y =3#_,x? will obey x}
distribution with mean value (y ) =02 For f=1, this is
known as Porter-Thomas distribution. The distribution
P(y), given by Eq. (6), is valid for circular ensembles too
[17].

The universality classes are applicable to a system
when a symmetry is exact or completely broken. It turns
out that the ensemble theory for these universality classes
is akin to that in equilibrium statistical mechanics where
no attention is paid to the approach to equilibrium. This
approach to equilibrium for partly broken symmetries is
taken care of in Dyson’s theory [14]. Here eigenvalues
are treated as particles which perform a Brownian
motion under a mutual two-body repulsive logarithmic
potential as a parameter is varied. This result derives
from, for example, parameter-dependent circular ensem-
bles of unitary matrices U, 5, =e®"M/2U, ¢'®YM/2 (simi-
larly for parameter-dependent Gaussian ensembles of
Hermitian matrices H, 5, =H,+8yM) in which an
infinitesimal random perturbation—in the present appli-
cation a symmetry breaking—is applied at each time y.
Here y can be thought of as “time”; in our problem,
v =0 is the symmetry-preserving case and y >0 is the
symmetry-breaking case. Stationarity is achieved in the
Y — o limit when the appropriate universality class of
the ensemble is attained. The Hermitian matrix M corre-
sponding to the symmetry-breaking random perturbation
belongs to a universality class of the Gaussian ensembles,
which in turn fixes the y — oo limit [14-16].

Under the variation of a symmetry-breaking parame-
ter, the eigenvectors |E; )’s are also affected. For exam-
ple, the possibility of T-breaking detection in eigenvec-
tors arises because the form of |E;) changes from the
time-reversal invariant (TRI) case (with only real com-
ponents) to the time-reversal noninvariant case (with real
and imaginary parts independently varying when ¥, the
“global” T-breaking parameters is varied). The essential
transition in strength fluctuations is governed by the rate
at which the eigenstates become complex as the strength
of the TRNI part increases. As mentioned in Sec. I, in
large-N) limits, this transition is abrupt with respect to
parameter ¥ but one can define a “local” parameter A in
terms of which it is smooth. The parameter A is basically
the measure, in a region of the spectrum with average
level spacing D(E), of a small-y contribution to the am-
plitude of the wave function from its imaginary part
[15,16],

2,2
1\==Ji;s— , (7)
with v2? as the variance of the matrix elements [of the
symmetry-breaking part of U(y) in the diagonal repre-
sentation of the symmetry-preserving part]. Note that y
depends only on the interaction H (or U) while A depends
also on the level density in a complicated system. For
given y and v, the transition parameter is proportional to
the matrix dimensionality, this arising from the effects of
the distant levels which compress the spectrum, and
thereby enhance by a factor N!/? the imaginary ampli-
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tude which is admixed into the real y =0 eigenstate. It is
because for N levels the spectrum span is proportional to
({(TrH?) /N)/? < N!/2 50 that the spacing is proportion-
al to N~!/2, It implies that, at any point in the spectrum
of a real system, there is defined a physically significant
effective dimensionality which enhances the sensitivity of
the fluctuation measures to the time-reversal breaking in-
teraction. For any serious analysis, therefore, this dimen-
sionality must be taken into consideration. As Eq. (7) in-
dicates, the transition parameter A is also energy depen-
dent, increasing, as one moves up in energy toward the
spectrum centroid.

For quantum chaotic systems, in the semiclassical lim-
it, A can also be expressed in terms of the actions of
periodic orbits of underlying classical dynamics (see Ref.
[16] for details) if the matrices associated with quantum
motion are fully random, belonging to classical ensembles
of matrices and the symmetry-breaking part of these ma-
trices is also a random matrix in the diagonal representa-
tion of the symmetry-preserving part. In this paper, we
show that the parameter A, governing the smooth transi-
tion in our numerical analysis, also turns out to be the
same, i.e., it is in agreement with our semiclassical as well
as RMT prediction.

For Gaussian-type Brownian ensembles, FKPT [11]
gave an approximate formulation for the two-point
strength fluctuation measures. They exploited the or-
thogonal invariance of the ensembles to find an appropri-
ate form of the probability density P(y) of one com-
ponent of an eigenvector. They considered a
GOE—GUE transition represented by the ensemble of
Gaussian random matrices of type H(a)=H(S)
+iyH(A), where S and A4 are N-dimensional real sym-
metric and antisymmetric Gaussian random matrices and
are statistically independent of each other. Here, for
0=y =<1, H(y) defines an interpolating ensemble, and for
v > 1 an extrapolating ensemble; H(0) and H(1) give the
two limits of transition, namely, GOE and GUE, respec-
tively. For all ¥ values, the ensembles are invariant un-
der orthogonal transformations. The case Y=o
represents the ensemble of antisymmetric matrices,
known as AGOE, and is also of some mathematical and
physical interest.

To describe the FKPT method briefly, one proceeds by
decomposing the jth eigenstate |E;) in real (|R;)) and
imaginary (|1;)) components,

) =e"[5R,) +iV T— A1) . ®)

Here ¢; is the contribution of the real component and the
phase & i is chosen so as to keep the real unit vectors |R j )

and |I;) orthogonal. This gives the strength y, in an N-
dimensional arbitrary basis k, as

y=N[t}k|R;)*+(1—t}H(k|I;)*]. )

Due to invariance of the Brownian motion ensembles
under orthogonal transformations, the application of any
such transformation on the eigenstates yields the eigen-
states of another member of the ensemble. This ensures
that the vectors |[R ) and |I) both uniformly cover the
N-dimensional unit sphere. In the large-N limit, this en-
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ables one to express y as the sum of the squares of two
zero-centered Gaussians with variances tj2 and (l—tjz)
with the following form of density [11]:

V(1-6))
Y

1l
9;

-J

0

P(y|9j)=L_ exp
j J

V',

where 6; [=4tj2( 1 ——tjz)] is the product of relative
strengths of real and imaginary parts of the eigenvector
component, P(y |9j) is the probability distribution of
strengths for a fixed 6;, and J, is Bessel’s function. Now
expressing P(Oj) as the 6; density, i.e., the probability of
the occurrence of a given 6;, the final strength density
P(y) can be obtained from P(y IOJ-) by averaging over 0;
(with 6; denoting the average of 6;),

JO s (10)

Py)= [ 'P(y(0,)P(6;)d6 (11a)
] e 68 b =
=, Py ag;,P(yl@j) P(6,)d6, (11b)
I PN TR IS o

where, in Eq. (11b), P(y |6 ;) is expanded in Taylor’s series
around 9 ; and Eq. (11c) is obtained by using the standard
definition of moments M, of 6 ; distribution, that is,
M,= [1(6,—6,)"P(6,)d0;.

The first four moments of P(y) distribution for large N
can be given as follows:

y=1,
var(y)=2-§j , 12
_ 12

K,(y)=48—480,+606;+9var(9;) .

The above formulas are useful only if they can be ex-
pressed in terms of A, the local symmetry-breaking pa-
rameter. For this purpose, French et al. used a pertur-
bation theory for the variances (see Ref. [11] for details),
which gives

= 2m’A

0;=— 3
where y is Euler’s constant. These results are a good ap-
proximation for A!/2<0.2.

Though the FKPT theory gave, in principle, a formu-
lation for the distribution P(y) of strengths, it requires
prior information about 6; distribution. The absence of
an explicit formulation in terms of the local symmetry-
breaking parameter A later on motivated many others to
study this problem. Here we give briefly the results ob-
tained by SI [22] as we will be using their results to com-
pare with our numerical results for QKR. Their analysis
consists in first obtaining the joint probability density of
finding an eigenvalue E and the corresponding eigenvec-
tor |E ), normalized to unity, by using orthogonal invari-
ance of the ensembles. This is followed by an integration
over all energies and all eigenvector components, except

[In(272A) +y —2] (13)
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that one gives the required probability density P(y) for
one component of an eigenvector in terms of the parame-
ter e=2y2N =212A,

€ pm — — .24 -2
P(y;e)=ﬂ—f exp{ [e+y(1. 4co.sqis)]/sm ¢ sin’6)}
™o sin*0sin’¢
Xdods . 14

Here P is normalized such that both f o Ply;eddy=1
and f o YP(y;€)dy =1. The parameter € varies between 0
and «; €—0 gives the orthogonal limit and for €—
the unitary limit is obtained. The variance of y associat-
ed with the distribution P(y;e€) can be given as follows:

var(e)=2—ee®E (€) , (15)

where E, is the exponential integral. It interpolates be-
tween 2 for the GOE and 1 for GUE. For €—0, it goes
like 2+€lne.

The strength density in the small-strength region is
more sensitive to symmetry breaking than any other
spectral or strength two-point measures. Briefly, it can
be explained as follows. The COE strength density exhib-
its a y ~1/? singularity at y =0 for all N. The expected
number of small strengths is thus very different for the
COE and CUE. For example, with large N, 11% of the
COE but only 2% of the CUE strengths is expected to be
less than 0.02. Thus it is of significance to know how rap-
idly the probability of small strengths varies with A. The
best measure, for this purpose, is the distribution func-
tion for small strengths which can be defined as follows
[11,18]:

F(x;e)= ["Py)dy= [ "P(y)dy — [ "P(y)dy
=F(x)—F(e), (16)

where x,y,e are the strengths measured in units of the
mean strength and € is a cutoff, which is needed in the
analysis of experimental data and depends on the quality
of the data. (The need to introduce € arises due to mea-
surement or numerical errors associated with the calcula-
tion of smallest strengths). The optimal x depends on the
amount of data available and is sensitive to missing and
spurious levels. Briefly, since there is a singularity in the
strength density at A=0, the smaller the value x con-
sidered, the more rapidly the transition proceeds as a pa-
rameter A. However, experimental and sample error
considerations put a limit on the smallest x considered as
well as € too. We have chosen €=0.004 and x =0.05 to
make use of theoretical (RMT) numbers given in Ref.
[18].

IV. NUMERICAL ANALYSIS

The main assumption underlying the transition theory
in RMT is that the Hermitian operator M in the
symmetry-breaking part exp(iyM) of the matrix U, is
random when expressed in the diagonal representation of
the symmetry-preserving part of U, [16]. In our earlier
work [16], we have verified that for the choice of parame-
ter values K /47?~20000 with N~200 and %=1 in
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QKR (strong-chaos limit), which ensures the delocaliza-
tion of eigenfunctions and strongly chaotic nature of clas-
sical dynamics, the matrix M turns out to be random and
belongs to the class of GUE ensembles and therefore
transition theory is valid for this range of K. In general,
for quantum chaotic systems, this theory is valid if the
underlying classical dynamics is strongly chaotic and
quantum dynamics is fully delocalized for exact symme-
try cases and remains so while the symmetry-breaking
parameter is slowly varied [16]. This suggests carrying
out the numerical study, of the transition in eigenvector
components of QKR, around this K value as the finger-
prints of RMT-type transition behavior should be expect-
ed only in the range of validity of the random-matrix hy-
pothesis. Furthermore, due to strong sensitivity of the
quantum dynamics to the stochastic parameter K, a small
variation of K in this range produces independent ma-
trices. We use this property to numerically generate the
matrix ensembles; the reason for using the ensemble of
matrices instead of just one is to improve the statistics
and minimize finite sample-size effects. For our numeri-
cal analysis, we take ensembles of three matrices of di-
mension N =199 with K /47*=20002, 20003, and
20004, 7i=1,and T =1.

Here we confine ourselves to study only the effect of T’
breaking on eigenvector components and therefore set
the parity symmetry parameter ¢=m/2N (which fully
breaks the P symmetry, as mentioned in Sec. II.). Now,
in order to see a smooth transition, it is necessary to iden-
tify the proper T symmetry-breaking parameter A [Eq.
(7)] for our system. Moreover, one should also know the
relation between y, the global symmetry-breaking param-
eter (the one which is present in U), vs A, the local
symmetry-breaking parameter, as well as the dependence
of ¥y on N. The latter is required due to strong sensitivity
of transition to size of the sample; a small change in sam-
ple size may bring an abrupt transition for the same y
values. For our case, as Eq. (3) indicates, the T-breaking
part of U is simply the operator exp(iyp) and the associ-
ated Hermitian operator M =p. Here p, when expressed
in the diagonal representation of the 7T symmetry-
preserving part of U, turns out to be an antisymmetric
matrix. Moreover, for strongly chaotic cases of QKR,
the matrix p is a random matrix (see Ref. [16] for details)
with distinct matrix elements distributed as independent
zero-centered Gaussian variables with zero mean and
variance Tr[p?/N(N —1)]~N /12. Hence from Eq. (7),
the A for T breaking in QKR [16] is given by (with
D =21 /N for circular ensembles)

p?
N(N —1)

_ '}/2N3
4872

2a72
A=Y 1

4772 r

(17)

The study of spectral fluctuations for the COE— CUE
transition in RMT tells us that the equilibrium is
achieved (i.e., the CUE limit) for A~0.2 [11,16]. Expect-
ing to see the transition here also nearly in the same A
range, we slowly break the T symmetry by varying ¥ in
the range 0.0-0.004 (step size 8y =~0.0004). For each y
chosen in this range, we generate an ensemble of three
matrices, the diagonalization of which gives us 3N in-
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dependent sets of eigenfunctions. To see the effect of the
y variation on P(y), all eigenvectors are considered to-
gether (thus giving 3X199X 199 components for statis-
tics) at each y; the resulting histograms for P(y) are plot-
ted in Fig. 1 for some of these cases. For a clear view of
the transition, we also plot the two limiting P(y) distribu-
tions for RMT, namely, COE and CUE [given by Eq. (6)].
Figures 1(a)—1(d) show that, while for ¥ =0 the histo-
gram does coincide with the theoretical COE curve, it
lies between COE and CUE curves for y7#0. With in-
creasing 7, this histogram slowly approaches the theoret-
ical CUE limit. For y very large (e.g., ¥y =1), it finally
coincides with the CUE curve. For comparison with
random-matrix results for transition ensembles, the P(y)
vs y relation, given by Eq. (14), is also fitted to each of
these histograms; hence we have used the relation
e=2m*A. As shown in Fig. 1, we find that, for this
choice of € vs A relation, the RMT curve coincides well
with the histogram for all y’s. Thus the RMT formula-
tion, given by Eq. (14) for P(y) distribution in symmetry-
breaking cases, seems to be a good model for the corre-
sponding cases in quantum chaotic systems. Further-
more, the smooth variation of histogram between the
COE—CUE limit indicates that the probability of
finding a given small strength (y <0.02) decreases with A
but it increases for large strengths (e.g., y =~1), which is
similar to the case in RMT. This implies that there is a
larger tendency to have higher strengths with increasing
A. This can be understood as a result of eigenvectors get-
ting more and more complex with increasing A. The rate
at which this probability changes with y decreases with
A. Moreover, the results shown in Fig. 1 reconfirm that
A defined by Eq. (7) is indeed the correct parameter to
study the smooth transition in the kicked rotor; this was
also confirmed by our earlier studies of the effect of sym-
metry breaking on eigenvalues of QKR [16].

To reconfirm that the transition in the distribution
P(y) has a similar behavior as for RMT, we also calculate
var(y) measure for eigenvectors. Figures 2(a) and 2(b)
show the dependence of var(y), for QKR, on small values
of A and large values of A, respectively, for two matrix
dimensionalities, namely, N =199 and 99 along with the
corresponding RMT result given by Eq. (15). Figure 2(a)
also contains the var(y) result [Eq. (12)], corresponding
to the RMT theory given by French et al. [11] (the
dashed curve); here the curve beyond A!”2>0.2 is ob-
tained by extrapolation. The solid curve corresponds to
the results obtained by Sommers and Iida [Eq. (15)] [22];
here again we have used the relation e=2m*A. As seen in
Fig. 2(a), the numbers for var(y) are in better agreement
with the perturbation results [Eq. (12)] [11] for A}/2<0.2
as compared to the one given by Eq. (15). Figure 2(b),
showing the large-A behavior of var(y), seems to indicate
a near agreement between our numerical results for QKR
and those given by Eq. (15), for the above-mentioned rela-
tion between A and €. To check the validity of FKPT
and SI theories, we apply the y? test. The calculated y?
values for FKPT and SI theories, for N=199 and 5 de-
grees of freedom (i.e., 5 data points), turn out to be 0.004
and 0.02, respectively, which are much less than the
theoretical x? (=11.07) at 5% level of significance. This
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implies an excellent agreement of both the theories with
the results obtained for QKR; a relatively lower x? value
for FKPT as compared to SI theory indicates a better
correspondence. To compare the SI curve with QKR
data, given in Fig. 2(b), the x? test is applied again; the y?
value for 9 degrees of freedom turns out to be 0.03, which
is much less than that of theoretical x? (=16.9) at 5%
level of significance, confirming once again the validity of
SI theory. Furthermore this figure also indicates that
here the approach to equilibrium, i.e., the CUE limit
[var(y)=1] is very slow; for example, for
Svar(y)/6A~—5, A~0.03, while at A=0.15,
S var(y)/6A=~—0.8. Note that the curves in Fig. 2(b)
have the proper COE limit, namely, var(y)=~2 for COE
while approaching the CUE limit for A— .

For a better understanding of the effect of T symmetry
breaking on small strengths, we study the F(x;e) mea-
sure too. The results are given in Fig. 3, which shows
that the probability of occurrence of small strengths de-
creases very rapidly with increase in A, a behavior similar
to that found in RMT. Thus F(x ;&) can be a good mea-
sure for detecting small-symmetry violation in quantum
chaotic systems too. For comparison of the F(x ;&) mea-
sure with random-matrix results, we use Monte Carlo
numbers given in Ref. [18] as theory; agreement is again
good.

Ply)

S &ICurve ~o-

P(y)
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In Ref. [16], we verified that the transition in spectral
fluctuations takes place in accordance with the relation
¥ < N 73/2 with ¥ as a global parameter and N dimension.
To verify that this formulation is valid for strength fluc-
tuations also, the above study is repeated for dimension
N =99 too. The results obtained are also plotted in Figs.
2(a), 2(b), and 3, which show that the points for N =99,
for both var(y) and F (x), are also in good agreement over
the entire range of A; the application of the x? test also
confirms our observation. This implies that the transition
in strength fluctuations is indeed governed by the same
parametrization. But note that the transition in strength
fluctuations completes at a much higher value of A. Here
equilibrium is achieved for A = 0.3 while for spectral fluc-
tuations one attains the CUE limit for A~0.2 [11,16].
Thus the speed of transition seems to be different for
strength and spectral fluctuations, which is contrary to
the behavior observed in RMT.

Although the RMT results for eigenvector statistics
are still not fully available and it is not possible to direct-
ly confirm the existence of transition ensembles of RMT
in the eigenvector statistics of quantum chaotic systems,
the coincidence of the limits and transition cases for the
probability of one component of the eigenvector as well
as the presence of a similar transition parameter A as
given by RMT indicates the existence of Brownian en-

=
o
T — T r T
16 COE-Curve — ]
CUE-Curve ——
QKR-Curve -
1.4 S&|-Curve ~o- 4
>
vy

L L L N o
o 0.5 1 15 2 25 3

FIG. 1. The histogram (dashed line) for the distribution of eigenvector components P(y) vs y for T violation. The data correspond
to the eigenvector components of three matrices for K around 20000, N=199, #=1, ¢=m/2N, and y varying; (a) ¥y =0.0, (b)
¥ =0.0008, (c) y =0.0016, (d) ¥ =0.0024. The two solid lines are two limits (the one with larger convexity is for COE and the other
for CUE) of COE— CUE transition. The dashed line is the fitting given by Eq. (14).



53 EFFECT OF SYMMETRY BREAKING ON “CHAOTIC” . ..

2 3
L
QKR (N=199) ©
19 b\ QKR (N=99; *
1.8 2
REA
3
3 x o
>
16
° e
15}
«
14
13 . . . . .
0 0.01 0.02 0.03 0.04 0.05 0.06
A
2 .
S&l —
QKR (N=199) ©
QKR (N=99) =
18 H° 1
o
16} 1
= °
5
>
x
141 ° 1
N
hd o
12 b ° R
1 . . N . .
0 0.05 0.1 0.15 02 0.25 03
A

FIG. 2. The variance var(y) vs A for T violation. (a) With
respect to small A. Here the points are given for two values for
N, namely, N=199 and 99, along with statistical error bars
which are obtained by taking three times of standard errors of
variance (30 error) associated with each data point where
0=0.01 and 0.02 for N =199 and 99, respectively. The dashed
curve is the perturbation RMT result, obtained by French et al.
[Eq. (12)] while the solid curve is given by Eq. (15). (b) With
respect to large A. The corresponding RMT curve is the one
given by Eq. (15).

sembles here as well. It can similarly be verified for other
symmetry breakings. Furthermore, in a separate study of
the distribution of zeros of chaotic eigenfunctions, ex-
pressed in phase-space representation [25], we have again
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FIG. 3. The measure F(x;0.004) vs A for T violation; here
x =0.05. The points here correspond to two values of N, name-
ly N=199 and 99. Also shown are the Monte Carlo points
which agree well with the N =199 and 99 curve.

observed the manifestation of random-matrix-type
behavior. We have also verified the presence of Brownian
ensembles of RMT in spectral correlations of quantum
chaotic systems [16]. Thus it is becoming more and more
evident that, in the semiclassical limit, the random-
matrix-type behavior seems to be present in almost all the
statistical properties of quantum operators associated
with a classically chaotic dynamics [25]. Intuitively it
may be interpreted as the randomness, introduced in
quantum properties, by the chaotic nature of underlying
classical dynamics where the degree and the type of ran-
domness is governed by the symmetries of the motion.
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